Диод - простейшая электронная лампа

Простейшей электронной лампой является диод. Слово «диод», основой которого служит греческий корень «ди» — два, означает, что в этой лампе имеются два электрода.

Первый из этих электродов — катод, служащий для «получения потока электронов и необходимый в каждой электронной лампе, к какому бы типу она ни относилась. Вторым электродом является металлическая пластинка— анод.

Строение электронной лампы диода

Таким образом, диод — двухэлектродная электронная лампа — представляет собой стеклянный или металлический баллон, из которого выкачан воздух и внутри которого находятся катод и анод.

От этих электродов сквозь стенки баллона проходят выводы. Если баллон стеклянный, то выводы впаиваются в стекло. Если же баллон металлический, то выводы можно сделать, например, через стеклянные бусинки, впаянные в металл.

От анода делается один вывод. От катода делаются два вывода. В случае катода прямого накала выводы делают от концов нити. Если катод подогревный, то от него делают три вывода: два — от подогревающей нити и один — от излучающего слоя, т. е. от собственно катода.

Внутри баллона лампы создается очень высокий вакуум, вполне достаточный для того, чтобы электроны могли беспрепятственно вылетать из раскаленного катода.

Поэтому если катод диода нагреть до нужной температуры, то начнется электронная эмиссия и электроны образуют вокруг катода своего рода электронное облачко.

Образование этого облачка объясняется тем, что электроны, вылетающие из катода, испытывают отталкивающее действие со стороны ранее вылетевших электронов, поэтому они не могут отлететь на значительное расстояние от катода.

Часть электронов, имеющих наименьшие скорости, падает обратно на катод. В конце концов электронное облачко стабилизируется: на катод падает столько же электронов, сколько из него вылетает. Облачко представляет собой запас свободных электронов в вакууме, пригодный для использования.

Второй находящийся, в баллоне диода электрод — анод — предназначается для использования электронов, вылетающих из катода, и для управления ими. С этой целью к катоду и аноду лампы подводится электрическое напряжение, например от батареи.

Вакуумный Диод - простейшая электронная лампа, строение и работа

Рис. 1. Вакуумный диод - простейшая электронная лампа, строение и работа.

Очевидно, это напряжение можно подвести к лампе двумя способами: минус источника напряжения — к катоду и плюс — к аноду или наоборот.

Если мы присоединим плюс источника напряжения к катоду, а минус — к аноду, то электроны, вылетающие из катода и сконцентрированные в окружающем его электронном облачке, не будут использованы. Отрицательно заряженный анод будет отталкивать электроны.

Иначе будет обстоять дело тогда, когда мы присоединим плюс источника напряжения к аноду, а минус — к катоду и одновременно в цепь батареи включим миллиамперметр. При таком присоединении миллиамперметр отметит прохождение тока.

Этот ток будет течь по следующей цепи: батарея — катод лампы—пространство между катодом и анодом лампы — миллиамперметр — батарея. Ток в цепи возникает тогда, когда плюс батареи присоединен к аноду, а минус — к катоду.

Этим и объясняется название второго электрода лампы: «анод» (в электротехнике анодом принято называть электроды, соединенные с положительным полюсом источника тока, а катодом—ч электроды, соединенные с отрицательным полюсом).

В соответствии с этим текущий через лампу ток, образованный потоком электронов, несущихся от катода к аноду, называют анодным током. Анодный ток обозначается обычно символом іа, а напряжение на аноде — символом Uа. В отличие от него напряжение накала лампы обозначается символом Uн. Чем же определяется величина Iа?

Опыт с лампой-диодом

Чтобы ответить на этот вопрос, произведем такой опыт. Раскалим катод до нужной температуры и будем подавать на анод положительное напряжение, начиная с самого небольшого и постепенно увеличивая его.

При каждом изменении анодного напряжения будем по миллиамперметру отмечать величину тока в цепи. Если мы затем по записанным отсчетам построим график, откладывая по горизонтальной оси величины напряжения на аноде, а по вертикальной — соответствующие величины анодного тока, го получим кривую, подобную изображенной на рисунке.

Зависимость анодного тока от напряжения на нем у лампы-диода 

Рис. 2. Зависимость анодного тока от напряжения на нем у лампы-диода.

При отсутствии анодного напряжения, т. е. при Са= 0, электроны к аноду не притягиваются, анодный ток будет равен нулю (Iа = 0). Анодный ток возникает после того, как на анод подано .положительное напряжение.

По мере его увеличения анодный ток будет возрастать, причем рост его до точки А вначале идет медленно, а затем быстрее. Такое быстрое возрастание тока продолжается, пока он не достигнет некоторого значения, соответствующего точке Б.

При дальнейшем повышении анодного напряжения рост анодного тока замедляется. Наконец, в точке В он достигает наибольшей величины. Дальнейшее повышение анодного напряжения уже не сопровождается увеличением анодного тока.

Кривая, показывающая зависимость величины анодного тока двухэлектродной лампы от напряжения на ее аноде, называется характеристикой лампы и служит для технических расчетов, связанных с использованием лампы.

Чем же объясняется такая форма характеристики диода? Чтобы понять это, проследим за происходящими в лампе процессами.

Вначале при отсутствии напряжения на аноде все излучаемые катодом электроны скапливаются вокруг него, образуя электронное облачко. При появлении на аноде небольшого положительного напряжения некоторые электроны, обладающие большей скоростью, чем остальные, начинают отрываться от облачка и устремляются к аноду, создавая небольшой анодный ток.

По мере увеличения анодного напряжения все большее количество электронов будет отрываться от облачка и притягиваться анодом. Наконец, при достаточно большом напряжении на аноде все электроны, окружающие катод, будут притянуты, электронное облачко совершенно «рассосется». Этот момент соответствует точке В характеристики лампы.

При таком анодном напряжении все вылетающие из катода электроны будут немедленно притягиваться анодом. Дальнейшее увеличение анодного тока при данной величине накала невозможно. Для этого нужны дополнительные электроны, а их взять негде, вся эмиссия катода исчерпана.

Анодный ток такой величины, какая устанавливается при полном использовании всей эмиссии катода, называется током насыщения. Увеличить ток насыщения можно только одним способом — повысить накал катода, но этот способ не применяется, потому что он сокращает срок службы катода.

Построение катода и анода лампы

До сих пор мы говорили об аноде как о металлической пластинке, находящейся внутри баллона лампы и имеющей вывод наружу. Делать анод действительно в виде пластинки было бы невыгодно, так как катод излучает электроны во всех направлениях, а пластинку можно поместить только с одной его стороны.

Построение катодов и анодов в радиолампе диоде

Рис. 3. Построение катодов и анодов в радиолампе диоде.

В практических конструкциях диодов анод обычно имеет форму цилиндра, окружающего катод. При таком устройстве лампы все излучаемые катодом электроны с одинаковой силой притягиваются анодом.

Цилиндрическая форма анода наиболее выгодна тогда, когда катод имеет прямолинейную форму. Если катод имеет вид латинской буквы V или W, что часто делается для увеличения его длины, то анод оказывается более выгодным делать в виде коробки без двух противоположных боковых стенок. Такой анод в сечении имеет прямоугольную форму, часто с закругленными углами.

У лампы с подогревным катодом аноду придают такую форму, чтобы он во всех направлениях отстоял по возможности на одинаковом расстоянии от катода.

Наиболее широко применяются цилиндрический подогревный катод и соответственно цилиндрический анод. Очень выгодной оказывается эллиптическая форма катода и анода.

Для уменьшения нагрева анода его часто снабжают ребрами или крылышками, которые способствуют лучшему отводу от него тепла.

Источник: Бурлянд В.А., Жеребцов И.П. Хрестоматия радиолюбителя. 1963 г.

0
1188
Добавить комментарий